最新动态更多>>

2020年春节放假通知

各位尊敬的老师们: 您们好!   安隆科讯2020年春节放假时间定为1月20日-1月30日,1月31号(正月初七正式上班)。节假日期间如果您有什么需要咨询或者帮助以及有推荐文章或者反馈意见的,依然可以通过邮箱sales@anachro.com,或者通过微信公众号(安隆代谢组)给我们留言,我们会尽快回复您的消息!   提前祝各位老师新年快乐,万事如意,大吉大利! 微信公众号:安隆代谢组 咨询邮箱:sales@anachro.com    公司网站:www.anachro.com.cn 推荐文章或反馈意见可直接在公众号内留言投稿或发邮件给我们sales@anachro.com

植物学

植物学

 育种筛选

 抗逆机制

 风味营养

 病虫害防治

应用前景:
近年来,代谢组学在培育筛选优质品种、监控蔬菜瓜果成熟过程、风味营养研究等多个方面逐渐显示优势;在研究植物应对环境变化的机制机理及病虫害的防治领域,代谢组学也成为了一种新的研究方法逐渐得到植物学研究者的关注。

NMR代谢组学方法研究

——区分相同基因,不同产地的牡丹根

研究背景

牡丹根中的主要活性物质是芍药苷和白芍苷,具有很好的药用价值,但不同地域牡丹根中活性成分浓度不同,将直接影响其药用价值,而从遗传学角度无法区分不同产地的牡丹根。

研究目的

NMR代谢组学方法研究不同地区,基因完全相同的牡丹根之间代谢物层面的差异,帮助指导牡丹根的产地溯源,为药物植物的质量控制、农产品的产地溯源提供新思路。

实验设计

实验结果——代谢组学信息应用新角度

基因角度研究发现不了的区别,从代谢角度层面可以得到很好区分,本次研究为通过代谢组研究,解决基因水平看不到的信息的代表。
红色:中国牡丹样本 黑色:韩国牡丹样本 绿色菱形:盲选的中国样本 绿色三角:盲选的韩国样本
1对样本进行随机扩增多态性DNA分析发现,即使是类似形态的牡丹也可能不是同一品种;2代谢组学分析发现大量的代谢物特色信号峰,如糖类、有机酸及牡丹典型代谢物芍药苷及白花素;
3通过以DNA为基础的CIS分析和HRM分析无法区分两个地区的牡丹根;4从代谢组学的角度清楚的看到两个地区牡丹根具有显著差异:中国样本中糖类和芳香化合物有较高的浓度,韩国样本中氨基酸有较高的浓度。
研究启示——质量控制新方法
基于1 H-NMR代谢组研究可以很好的应用于中药的质量控制,特别是在牡丹根做分级定价的时候,产源地被认为是必不可少的参考因素。通过代谢组学方法正确识别产源地、防止产地假冒,不仅能够帮助促进当地的社会经济发展,同时还能够建立消费者的信任和忠诚度。
文献检索:
Discrimination between Genetically Identical Peony Roots from Different Regions of Origin based on 1H-nuclear magnetic resonance spectroscopy-based Metabolomics: Determination of the Geographical Origins and Estimation of the Mixing Proportions of Blended Samples, Anal Bioanal Chem, 2013, 405:7523-7534

植物学领域2015年发表的文献

  1. Zhang, W.; Tan, N. G.; Fu, B.; Li, S. F. Metallomics and NMR-based metabolomics of Chlorella sp. reveal the synergistic role of copper and cadmium in multi-metal toxicity and oxidative stress. Metallomics : integrated biometal science 2015, 7, 426-438. (IF:3.902)
  2. Kortesniemi, M.; Vuorinen, A. L.; Sinkkonen, J.; Yang, B.; Rajala, A.; Kallio, H. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa). Food chemistry 2015, 172, 63-70. (IF:3.391)
  3. Hagel, J. M.; Mandal, R.; Han, B.; Han, J.; Dinsmore, D. R.; Borchers, C. H.; Wishart, D. S.; Facchini, P. J. Metabolome analysis of 20 taxonomically related benzylisoquinoline alkaloid-producing plants. BMC plant biology 2015, 15, 220. (IF:3.813)
  4. Jung, Y.; Ha, M.; Lee, J.; Ahn, Y. G.; Kwak, J. H.; Ryu, D. H.; Hwang, G. S. Metabolite Profiling of the Response of Burdock Roots to Copper Stress. Journal of agricultural and food chemistry 2015. (IF:2.912)
  5. Mahmud I, Shrestha B, Boroujerdi A, et al. NMR-based metabolomics profile comparisons to distinguish between embryogenic and non-embryogenic callus tissue of sugarcane at the biochemical level[J]. In Vitro Cellular & Developmental Biology-Plant, 2015: 1-10.
  6. Kortesniemi M, Vuorinen A L, Sinkkonen J, et al. NMR metabolomics of ripened and developing oilseed rape (Brassica napus) and turnip rape (Brassica rapa)[J]. Food chemistry, 2015, 172: 63-70.
  7. Jung Y, Ha M, Lee J, et al. Metabolite Profiling of the Response of Burdock Roots to Copper Stress[J]. Journal of agricultural and food chemistry, 2015, 63(4): 1309-1317.
  8. Harrigan G G, Skogerson K, MacIsaac S, et al. Application of 1H NMR Profiling To Assess Seed Metabolomic Diversity. A Case Study on a Soybean Era Population[J]. Journal of agricultural and food chemistry, 2015.
  9. Sade D, Shriki O, Cuadros-Inostroza A, et al. Comparative metabolomics and transcriptomics of plant response to infection in resistant and susceptible tomato cultivars[J]. Metabolomics, 2015, 1(11): 81-97.
  10. Mahdavi V, Farimani M M, Fathi F, et al. A targeted metabolomics approach toward understanding metabolic variations in rice under pesticide stress[J]. Analytical biochemistry, 2015, 478: 65-72.
  11. Omranian N, Kleessen S, Tohge T, et al. Differential metabolic and coexpression networks of plant metabolism[J]. Trends in plant science, 2015, 20(5): 266-268.
  12. Plaxton W C, Shane M W. The role of post-translational enzyme modifications in the metabolic adaptations of phosphorus-deprived plants[J]. Phosphorus Metabolism in Plants. Annual Plant Reviews. Oxford: Wiley-Blackwell, 2015, 48: 99-124.
  13. Yuan L, Grotewold E. Metabolic engineering to enhance the value of plants as green factories[J]. Metabolic engineering, 2015, 27: 83-91.
  14. PANT B D, Pant P, Erban A, et al. Identification of primary and secondary metabolites with phosphorus status‐dependent abundance in Arabidopsis, and of the transcription factor PHR1 as a major regulator of metabolic changes during phosphorus limitation[J]. Plant, cell & environment, 2015, 38(1): 172-187.
  15. Kölling K, Thalmann M, Müller A, et al. Carbon partitioning in Arabidopsis thaliana is a dynamic process controlled by the plants metabolic status and its circadian clock[J]. Plant, cell & environment, 2015.
  16. Lucini L, Rouphael Y, Cardarelli M, et al. The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions[J]. Scientia Horticulturae, 2015, 182: 124-133.