最新动态更多>>

2020年春节放假通知

各位尊敬的老师们: 您们好!   安隆科讯2020年春节放假时间定为1月20日-1月30日,1月31号(正月初七正式上班)。节假日期间如果您有什么需要咨询或者帮助以及有推荐文章或者反馈意见的,依然可以通过邮箱sales@anachro.com,或者通过微信公众号(安隆代谢组)给我们留言,我们会尽快回复您的消息!   提前祝各位老师新年快乐,万事如意,大吉大利! 微信公众号:安隆代谢组 咨询邮箱:sales@anachro.com    公司网站:www.anachro.com.cn 推荐文章或反馈意见可直接在公众号内留言投稿或发邮件给我们sales@anachro.com

动医动科

 兽医兽药

 动物饲料营养

 动物疾病预防

应用前景:
随着养殖业现代化、集约化和规模化的不断发展,人们对畜产品质量控制、生态环境安全等的关注和需求也在日益增加。目前,代谢组学已越来越多的应用在食品安全监控、饲养方式优化和动物疾病的诊断及预防研究上,这将从一个全新视角为现代化的畜牧养殖业提供更多有价值的信息及帮助。

热应激泌乳奶牛中诊断标志物的识别和代谢途径的改变

研究背景

热应力(HS)每年给全球的乳制品行业都带来巨大损失,包括动物性能降低、代谢紊乱和健康问题。目前为止,奶牛热应力的生物机制仍然难以捉摸。

研究目的

结合NMR和LC-MS方法探索研究奶牛HS代谢紊乱的机制,找到潜在的诊断生物标志物,并探索HS环境导致的代谢变化途径,为进一步研究全球性的奶牛热应激提供新视角。

实验设计

1.控制条件:所有奶牛统一控制饲养方式、体重和饲养天数等因素
2.样本收集:春季(4月)收集非热应激奶牛血样;夏季(7月)收集热应激奶牛血样
3.实验方法:采用LC-MS和NMR平台分别检测分析血样,MRM分析脂质体部分,并同时记录两组奶牛温度、湿度、直肠温度、呼吸率及生产特点等信息

研究结果——调控酶浓度与代谢数据结合分析

利用1H NMR和LC-MS技术,将代谢组学和脂质组学分析方法相结合,研究了泌乳奶牛中无HS组和HS组之间的血浆代谢物的区别。总的来说,识别了41种泌乳奶牛HS状态的代谢物。
1使用ROC模型评估潜在诊断生物标志物,其中三甲胺(TMA)、葡萄糖、乳酸、甜菜碱、花生四烯酸、肌酸、丙酮酸、乙酰乙酸盐、β-羟基丁酸、溶血磷脂酰胆碱(18:0)、卵磷脂(16:0/14:0)等13个代谢物被认为是可靠的诊断泌乳期奶牛HS的生物标志物;这些标志物与碳水化合物、氨基酸、脂类或肠道微生物衍生的代谢物有关;
2HS组中乳酸脱氢酶和精氨酸酶,肌酐酰胺水解酶、乙酰乙酸盐脱羧酶和3-羟基丁酸脱氢酶的浓度明显高于HS-free组;另外,与脂质代谢相关的磷脂酶A1,A2,和D的浓度、乙酰辅酶a、肾上腺素和去甲肾上腺素在HS组显著上调;
3HS组牛奶中与炎症反应相关的体细胞数增加;4研究结果显示HS会抑制血浆中葡萄糖浓度,而上调丙酮酸和乳酸浓度,与此同时,HS组乳酸脱氢酶的活性显著提高,预示增强糖酵解和厌氧细胞呼吸可能是牛机体为了应对HS,维护体内能源平衡的一种自适应机制。5牛瘤胃发酵的碳水化合物也是一个乳酸的来源,这个过程的上调可能与瘤胃中有关微生物的代谢改变有关,最终导致的奶牛的低产能。6两组多种氨基酸浓度的变化明显,在HS组牛奶蛋白比其他成分更容易合成,HS可能引起泌乳奶牛将牛奶中的蛋白质转化为尿素,预示HS影响泌乳奶牛氮代谢的途径。7脂质组相关代谢物的变化表明在HS组中磷脂酶A1、A2和D的含量更高,总体预示HS影响了泌乳奶牛的脂质代谢。
研究启示—多平台数据整合
这项研究将NMR与LC-MS技术相结合,能够对代谢谱进行全面分析,还可用于识别泌乳奶牛中HS诱导的代谢紊乱的潜在的生物标志物,同时也为HS诱导的代谢途径的变化提供了新的见解。未来,还需要大规模样本的分析,以验证潜在的生物标志物的实际用途,并进一步阐明HS诱导的代谢途径的变化所涉及的生理机制。
原文索引:
Tian, H., Wang, W. Y., Zheng, N., et al.Identification of diagnostic biomarkers and metabolic pathway shifts ofheat-stressed lactating dairy cows. J Proteomics 2015, 125,17-28.

动医动科领域2015年发表的文献

  1. Xu, H. D.; Wang, J. S.; Li, M. H.; Liu, Y.; Chen, T.; Jia, A. Q. 1H NMR based metabolomics approach to study the toxic effects of herbicide butachlor on goldfish (Carassius auratus). Aquatic toxicology 2015, 159, 69-80. (IF:3.451) (chenomx)
  2. Tian, H.; Wang, W.; Zheng, N.; Cheng, J.; Li, S.; Zhang, Y.; Wang, J. Data from identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows. Data in brief 2015, 4, 90-95. (chenomx)
  3. Williams, C. M.; Watanabe, M.; Guarracino, M. R.; Ferraro, M. B.; Edison, A. S.; Morgan, T. J.; Boroujerdi, A. F.; Hahn, D. A. Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster. Evolution; international journal of organic evolution 2014, 68, 3505-3523. (IF:5.146)
  4. Li, L.; Wu, H.; Ji, C.; van Gestel, C. A.; Allen, H. E.; Peijnenburg, W. J. A metabolomic study on the responses of daphnia magna exposed to silver nitrate and coated silver nanoparticles. Ecotoxicology and environmental safety 2015, 119, 66-73. (IF:2.762) (chenomx)
  5. Cheng, K.; Wagner, L.; Moazzami, A. A.; Gómez-Requeni, P.; Schiller Vestergren, A.; Brännäs, E.; Pickova, J.; Trattner, S. Decontaminated fishmeal and fish oil from the Baltic Sea are promising feed sources for Arctic char (Salvelinus alpinus L.)-studies of flesh lipid quality and metabolic profile. European Journal of Lipid Science and Technology 2015, n/a-n/a. (IF:1.812)
  6. Liu, Y.; Chen, T.; Li, M. H.; Xu, H. D.; Jia, A. Q.; Zhang, J. F.; Wang, J. S. 1H NMR based metabolomics approach to study the toxic effects of dichlorvos on goldfish (Carassius auratus). Chemosphere 2015, 138, 537-545. (IF:3.340) (chenomx)
  7. Li, M.-H.; Ruan, L.-Y.; Liu, Y.; Xu, H.-D.; Chen, T.; Fu, Y.-H.; Jiang, L.; Wang, J.-S. Insight into biological system responses in goldfish (Carassius auratus) to multiple doses of avermectin exposure by integrated 1H NMR-based metabolomics. Toxicol. Res. 2015, 4, 1374-1388. (IF:3.529) (chenomx)
  8. Brandao, F.; Cappello, T.; Raimundo, J.; Santos, M. A.; Maisano, M.; Mauceri, A.; Pacheco, M.; Pereira, P. Unravelling the mechanisms of mercury hepatotoxicity in wild fish (Liza aurata) through a triad approach: bioaccumulation, metabolomic profiles and oxidative stress. Metallomics : integrated biometal science 2015, 7, 1352-1363. (IF:3.902)
  9. Allen, P. J.; Wise, D.; Greenway, T.; Khoo, L.; Griffin, M. J.; Jablonsky, M. Using 1-D 1H and 2-D 1H J-resolved NMR metabolomics to understand the effects of anemia in channel catfish (Ictalurus punctatus). Metabolomics 2014, 11, 1131-1143. (IF:3.855)
  10. Zhang, Y.; Dai, B.; Deng, Y.; Zhao, Y. AFM and NMR imaging of squid tropomyosin Tod p1 subjected to high hydrostatic pressure: evidence for relationships among topography, characteristic domain and allergenicity. RSC Adv. 2015, 5, 73207-73216. (IF:3.840) (chenomx)
  11. Watanabe, M.; Meyer, K. A.; Jackson, T. M.; Schock, T. B.; Johnson, W. E.; Bearden, D. W. Application of NMR-based metabolomics for environmental assessment in the Great Lakes using zebra mussel (Dreissena polymorpha). Metabolomics 2015, 11, 1302-1315. (IF:3.855)