最新动态更多>>

2020年春节放假通知

各位尊敬的老师们: 您们好!   安隆科讯2020年春节放假时间定为1月20日-1月30日,1月31号(正月初七正式上班)。节假日期间如果您有什么需要咨询或者帮助以及有推荐文章或者反馈意见的,依然可以通过邮箱sales@anachro.com,或者通过微信公众号(安隆代谢组)给我们留言,我们会尽快回复您的消息!   提前祝各位老师新年快乐,万事如意,大吉大利! 微信公众号:安隆代谢组 咨询邮箱:sales@anachro.com    公司网站:www.anachro.com.cn 推荐文章或反馈意见可直接在公众号内留言投稿或发邮件给我们sales@anachro.com

饮食营养

 饮食营养与健康

 运动科学

 肠道益生菌

应用前景:
随着生活水平提高,人们越来越注重饮食的合理搭配与营养,有研究者开始从代谢层面研究不同层次的人群如何搭建更科学健康的饮食结构。

大鼠间歇性喂食高能量食物对其代谢的影响

研究背景

早期的生活环境对长期的健康有着重要的影响,虽然机体有适应和调整能力,但是后续生活环境对机体的患病几率也有影响。高脂饮食会对机体有很多不良影响,比如肥胖、瘦素(Leptin,LP是由脂肪组织分泌的一种蛋白质类激素,普遍认为它进入血液循环后会参与糖、脂肪及能量代谢的调节)等。本研究通过给予长期喂食高蛋白或高益生纤维的大鼠间歇喂养高能量食物,观测他们代谢层面的差异。

实验设计

1. 出生21天后断奶的大鼠;
2. 分为对照组(C)、高蛋白饮食(HP)和高益生纤维饮食(HF);
3. 大鼠断奶后三组各喂养15周后,再用高能量饮食喂养六周,之
  后恢复之前喂养条件继续四周;
3. 大鼠断奶后三组各喂养15周后,再用高能量饮食喂养六周,之后恢复之前喂养条件继续四周;
4. NMR检测大鼠血浆样本。

研究结果——环境科学新方法

本次研究发现高能量物质摄入后,高蛋白饮食组大鼠体内依旧伴随着短暂的脂肪堆积,这与对照组的结果类似。而高益生纤维可以保护机体受到的多 余脂肪和高血糖的影响。高益生饮食可能对机体有一定程度的代谢救援作用。
1断奶至第15周,HF组大鼠体重增加较慢。研究中,HP组保持最高体重,并始终高于HF组。最后三周,HP组能量摄入明显高于HF组和C组;2恢复正常喂养条件后,HP组和C组中身体脂肪含量基本相同,这与前一阶段的研究结果不同——高能量喂养后,HP身体脂肪含量明显高于C组和HF组。HP在高能量饮食阶段身体脂肪有所增加,可能恢复之前的饮食后,有利于其减去脂肪,或者本次试验中C组大鼠有些不同;3生长期间,HP饮食进食后30、60、90分钟的血糖含量高于HF组。在饮食恢复正常的实验后期,HP和HF组血糖含量没有明显差别;
4饱腹感激素由肠细胞分泌,可以减少食物的摄入。HF组,空腹和餐后状态,饱腹感激素水平都较高。益生纤维似乎对肠细胞产生和分泌饱腹感激素有持续作用,结束喂食高益生纤维后,大鼠体内仍有较高水平的饱腹感激素;5通过多元统计分析,HF组中空腹状态时,异丁酸、甘露糖、支链氨基酸,亮氨酸、异亮氨酸的含量增加;肌酸、柠檬酸和丝氨酸含量减少。对差异度贡献最大的是精氨酸;6益生纤维和支链脂肪酸(一种肠道菌群产物)有关,而支链脂肪酸对蛋白的合成和细胞的生长起关键作用;7HF组大鼠在成年后接受间歇性高能量表现出的不良反应更少。
研究启示——整体性研究
代谢组学是把生物体作为一个整体来研究,这点正好与饮食对生物体的影响是全面的相吻合,所以代谢组学是研究饮食对生物体影响的很好选择。
文献检索:
Satiety Hormone and Metabolomic Response to an Intermittent High Energy Diet Differs in Rats Consuming Long-Term Diets High in Protein or Prebiotic Fiber, J Proteme Res, 2012, 11(8):4064-4074

饮食营养领域2015年发表的文献

  1. Vázquez-Fresno, R.; Llorach, R.; Urpi-Sarda, M.; Khymenets, O.; Bulló, M.; Corella, D.; Fitó, M.; Martínez-González, M. A.; Estruch, R.; Andres-Lacueva, C. An NMR metabolomics approach reveals a combined-biomarkers model in a wine interventional trial with validation in free-living individuals of the PREDIMED study. Metabolomics 2014, 11, 797-806. (IF:3.855)
  2. Harrigan, G. G.; Skogerson, K.; MacIsaac, S.; Bickel, A.; Perez, T.; Li, X. Application of 1H NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population. Journal of agricultural and food chemistry 2015, 63, 4690-4697. (IF:2.912)
  3. Spevacek, A. R.; Smilowitz, J. T.; Chin, E. L.; Underwood, M. A.; German, J. B.; Slupsky, C. M. Infant Maturity at Birth Reveals Minor Differences in the Maternal Milk Metabolome in the First Month of Lactation. The Journal of nutrition 2015, 145, 1698-1708. (IF:3.916)
  4. Abdul-Hamid, N. A.; Abas, F.; Ismail, I. S.; Shaari, K.; Lajis, N. H. Influence of Different Drying Treatments and Extraction Solvents on the Metabolite Profile and Nitric Oxide Inhibitory Activity of Ajwa Dates. Journal of food science 2015, 80, H2603-2611. (IF:1.696)
  5. Lawal, U.; Mediani, A.; H, M.; Shaari, K.; Ismail, I. S.; Khatib, A.; Abas, F. Metabolite profiling of Ipomoea aquatica at different growth stages in correlation to the antioxidant and α-glucosidase inhibitory activities elucidated by 1H NMR-based metabolomics. Scientia Horticulturae 2015, 192, 400-408. (IF:1.365)
  6. Mahmud, I.; Kousik, C.; Hassell, R.; Chowdhury, K.; Boroujerdi, A. F. NMR Spectroscopy Identifies Metabolites Translocated from Powdery Mildew Resistant Rootstocks to Susceptible Watermelon Scions. Journal of agricultural and food chemistry 2015, 63, 8083-8091. (IF:2.912)
  7. Warner, R. D.; Jacob, R. H.; Rosenvold, K.; Rochfort, S.; Trenerry, C.; Plozza, T.; McDonagh, M. B. Altered post-mortem metabolism identified in very fast chilled lamb M. longissimus thoracis et lumborum using metabolomic analysis. Meat Science 2015, 108, 155-164. (IF:2.615)
  8. Zheng, H.; Yde, C. C.; Clausen, M. R.; Kristensen, M.; Lorenzen, J.; Astrup, A.; Bertram, H. C. Metabolomics investigation to shed light on cheese as a possible piece in the French paradox puzzle. Journal of agricultural and food chemistry 2015, 63, 2830-2839. (IF:2.912)
  9. Karimpour M, Surowiec I, Wu J, et al. Postprandial metabolomics: a pilot mass spectrometry and NMR study of the human plasma metabolome in response to a challenge meal[J]. Analytica Chimica Acta, 2015.
  10. Gibbons H, McNulty B A, Nugent A P, et al. A metabolomics approach to the identification of biomarkers of sugar-sweetened beverage intake[J]. The American journal of clinical nutrition, 2015, 101(3): 471-477.
  11. Moazzami A A, Frank S, Gombert A, et al. Non-targeted 1 H-NMR-metabolomics suggest the induction of master regulators of energy metabolism in the liver of vitamin E-deficient rats[J]. Food & function, 2015, 6(4): 1090-1097.
  12. Pekkinen J, Rosa‐Sibakov N, Micard V, et al. Amino acid‐derived betaines dominate as urinary markers for rye bran intake in mice fed high‐fat diet—A nontargeted metabolomics study[J]. Molecular nutrition & food research, 2015.
  13. Brasili E, Filho V C. Metabolomics of cancer cell cultures to assess the effects of dietary phytochemicals[J]. Critical reviews in food science and nutrition, 2015 (just-accepted): 00-00.
  14. Li Z Y, Ding L L, Li J M, et al. 1H-NMR and MS Based Metabolomics Study of the Intervention Effect of Curcumin on Hyperlipidemia Mice Induced by High-Fat Diet[J]. PloS one, 2015, 10(3).
  15. De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome[J]. Gut, 2015: gutjnl-2015-309957.